Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Res ; 20(11): 1659-1673, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-35994381

RESUMO

Acute myeloid leukemia (AML) is a hematologic malignancy metabolically dependent on oxidative phosphorylation and mitochondrial electron transport chain (ETC) activity. AML cells are distinct from their normal hematopoietic counterparts by this metabolic reprogramming, which presents targets for new selective therapies. Here, metabolic changes in AML cells after ETC impairment are investigated. Genetic knockdown of the ETC complex II (CII) chaperone protein SDHAF1 (succinate dehydrogenase assembly factor 1) suppressed CII activity and delayed AML cell growth in vitro and in vivo. As a result, a novel small molecule that directly binds to the ubiquinone binding site of CII and inhibits its activity was identified. Pharmacologic inhibition of CII induced selective death of AML cells while sparing normal hematopoietic progenitors. Through stable isotope tracing, results show that genetic or pharmacologic inhibition of CII truncates the tricarboxylic acid cycle (TCA) and leads to anaplerotic glutamine metabolism to reestablish the truncated cycle. The inhibition of CII showed divergent fates, as AML cells lacked the metabolic plasticity to adequately utilize glutamine metabolism, resulting in preferential depletion of key TCA metabolites and death; normal cells were unaffected. These findings provide insight into the metabolic mechanisms that underlie AML's selective inhibition of CII. IMPLICATIONS: This work highlights the effects of direct CII inhibition in mediating selective AML cell death and provides insights into glutamine anaplerosis as a metabolic adaptation that can be therapeutically targeted.


Assuntos
Glutamina , Leucemia Mieloide Aguda , Humanos , Glutamina/genética , Succinato Desidrogenase/metabolismo , Succinato Desidrogenase/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Fosforilação Oxidativa
2.
Blood ; 137(25): 3518-3532, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33720355

RESUMO

Acute myeloid leukemia (AML) cells have an atypical metabolic phenotype characterized by increased mitochondrial mass, as well as a greater reliance on oxidative phosphorylation and fatty acid oxidation (FAO) for survival. To exploit this altered metabolism, we assessed publicly available databases to identify FAO enzyme overexpression. Very long chain acyl-CoA dehydrogenase (VLCAD; ACADVL) was found to be overexpressed and critical to leukemia cell mitochondrial metabolism. Genetic attenuation or pharmacological inhibition of VLCAD hindered mitochondrial respiration and FAO contribution to the tricarboxylic acid cycle, resulting in decreased viability, proliferation, clonogenic growth, and AML cell engraftment. Suppression of FAO at VLCAD triggered an increase in pyruvate dehydrogenase activity that was insufficient to increase glycolysis but resulted in adenosine triphosphate depletion and AML cell death, with no effect on normal hematopoietic cells. Together, these results demonstrate the importance of VLCAD in AML cell biology and highlight a novel metabolic vulnerability for this devastating disease.


Assuntos
Ácidos Graxos/metabolismo , Leucemia Mieloide Aguda/metabolismo , Acil-CoA Desidrogenase de Cadeia Longa/genética , Acil-CoA Desidrogenase de Cadeia Longa/metabolismo , Linhagem Celular Tumoral , Ciclo do Ácido Cítrico , Ácidos Graxos/genética , Glicólise , Humanos , Cetona Oxirredutases/metabolismo , Leucemia Mieloide Aguda/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
3.
Mol Nutr Food Res ; 63(24): e1900688, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31609072

RESUMO

SCOPE: The effects of an avocado-derived fatty acid oxidation (FAO) inhibitor, avocatin B (AvoB), on glucose and lipid metabolism in models of diet-induced obesity (DIO) and in vitro models of lipotoxicity are evaluated. The safety of its oral consumption in humans is also determined. METHODS AND RESULTS: Mice are given high-fat diets (HFD) for 8 weeks. Thereafter, AvoB or vehicle is administered orally twice weekly for 5 weeks. AvoB inhibits FAO which led to improved glucose tolerance, glucose utilization, and insulin sensitivity. AvoB's effects on metabolism under lipotoxic conditions are evaluated in vitro in pancreatic ß-islet cells and C2C12 myotubes. AvoB inhibits FAO and increases glucose oxidation, resulting in lowering of mitochondrial reactive oxygen species that improves insulin responsiveness in C2C12 myotubes and insulin secretion in INS-1 (832/13) cells, respectively. A randomized, double-blind, placebo-controlled clinical trial in healthy human participants is conducted to assess the safety of AvoB consumption (50 mg or 200 mg per day for 60 days). AvoB is well-tolerated and not associated with any dose-limiting toxicity. CONCLUSION: Therapeutic agents that are safe and effectively inhibit FAO and improve DIO-associated pathologies are currently not available. AvoB's mechanism of action and favorable safety profile highlight its nutritional and clinical importance.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina , Lipídeos/farmacologia , Obesidade/tratamento farmacológico , Adulto , Animais , Método Duplo-Cego , Ácidos Graxos/metabolismo , Feminino , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Lipídeos/uso terapêutico , Masculino , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Obesidade/etiologia , Persea/química , Projetos Piloto
5.
Cell Signal ; 25(12): 2587-603, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23993964

RESUMO

Epidermal growth factor (EGF)-induced EGFR tyrosine kinase receptor activation in cancer cell survival responses has become a strategic molecular-targeting clinical therapeutic intent, but the failures of these targeted approaches in the clinical setting demand alternate strategies. Here, we uncover a novel neuraminidase-1 (Neu1) and matrix metalloproteinase-9 (MMP-9) cross-talk in alliance with GPCR neuromedin B, which is essential for EGF-induced receptor activation and cellular signaling. Neu1 and MMP-9 form a complex with EGFR on the cell surface. Tamiflu (oseltamivir phosphate), anti-Neu1 antibodies, broad range MMP inhibitor galardin (GM6001), neuromedin B GPCR specific antagonist BIM-23127, the selective inhibitor of whole heterotrimeric G-protein complex BIM-46174 and MMP-9 specific inhibitor dose-dependently inhibited Neu1 activity associated with EGF stimulated 3T3-hEGFR cells. Tamiflu, anti-Neu1 antibodies and MMP9i attenuated EGFR phosphorylation associated with EGF-stimulated cells. Preclinical data provide the proof-of-evidence for a therapeutic targeting of Neu1 with Tamiflu in impeding human pancreatic cancer growth and metastatic spread in heterotopic xenografts of eGFP-MiaPaCa-2 tumors growing in RAGxCγ double mutant mice. Tamiflu-treated cohort exhibited a reduction of phosphorylation of EGFR-Tyr1173, Stat1-Tyr701, Akt-Thr308, PDGFRα-Tyr754 and NFκBp65-Ser311 but an increase in phospho-Smad2-Ser465/467 and -VEGFR2-Tyr1175 in the tumor lysates from the xenografts of human eGFP-MiaPaCa-2 tumor-bearing mice. The findings identify a novel promising alternate therapeutic treatment of human pancreatic cancer.


Assuntos
Antineoplásicos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Receptores ErbB/metabolismo , Oseltamivir/uso terapêutico , Pâncreas/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico/metabolismo , Humanos , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Células NIH 3T3 , Metástase Neoplásica/prevenção & controle , Neuraminidase/metabolismo , Pâncreas/metabolismo , Pâncreas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia
6.
PLoS One ; 7(10): e47088, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23077548

RESUMO

BACKGROUND: This study mapped regions of genomic RNA (gRNA) important for packaging and propagation of mouse mammary tumor virus (MMTV). MMTV is a type B betaretrovirus which preassembles intracellularly, a phenomenon distinct from retroviruses that assemble the progeny virion at cell surface just before budding such as the type C human and feline immunodeficiency viruses (HIV and FIV). Studies of FIV and Mason-Pfizer monkey virus (MPMV), a type D betaretrovirus with similar intracellular virion assembly processes as MMTV, have shown that the 5' untranslated region (5' UTR) and 5' end of gag constitute important packaging determinants for gRNA. METHODOLOGY: Three series of MMTV transfer vectors containing incremental amounts of gag or 5' UTR sequences, or incremental amounts of 5' UTR in the presence of 400 nucleotides (nt) of gag were constructed to delineate the extent of 5' sequences that may be involved in MMTV gRNA packaging. Real time PCR measured the packaging efficiency of these vector RNAs into MMTV particles generated by co-transfection of MMTV Gag/Pol, vesicular stomatitis virus envelope glycoprotein (VSV-G Env), and individual transfer vectors into human 293T cells. Transfer vector RNA propagation was monitored by measuring transduction of target HeLaT4 cells following infection with viral particles containing a hygromycin resistance gene expression cassette on the packaged RNA. PRINCIPAL FINDINGS: MMTV requires the entire 5' UTR and a minimum of ~120 nucleotide (nt) at the 5' end of gag for not only efficient gRNA packaging but also propagation of MMTV-based transfer vector RNAs. Vector RNAs without the entire 5' UTR were defective for both efficient packaging and propagation into target cells. CONCLUSIONS/SIGNIFICANCE: These results reveal that the 5' end of MMTV genome is critical for both gRNA packaging and propagation, unlike the recently delineated FIV and MPMV packaging determinants that have been shown to be of bipartite nature.


Assuntos
Regiões 5' não Traduzidas , Vírus do Tumor Mamário do Camundongo/genética , RNA Viral/genética , Infecções por Retroviridae/genética , Infecções Tumorais por Vírus/genética , Animais , Sequência de Bases , Linhagem Celular , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/genética , Células HeLa , Humanos , Camundongos , RNA Viral/química , Transfecção
7.
Cell Immunol ; 277(1-2): 33-43, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22795895

RESUMO

Invariant NKT (iNKT) cells are glycolipid-reactive lymphocytes with anti-microbial properties. Toll-like receptor (TLR)-primed antigen-presenting cells are known to activate iNKT cells, however, the expression and function of TLRs in iNKT cells remain largely unknown. Here, we show that TCR-activation of murine iNKT cells by α-GalactosylCeramide (α-GalCer) or anti-CD3 antibodies can result in increased expression of TLR genes. TLR3, 5 and 9-mediated costimulation of TCR-preactivated iNKT cells resulted in enhancement of iNKT cell activation, as determined by their cytokine production. Expression of TLR3 and 9 at protein level was also confirmed in TCR-activated iNKT cells. Furthermore, TCR-preactivation followed by TLR9-costimulation of iNKT cells increased their ability to induce maturation of dendritic cells. Thus, our findings show that iNKT cells can up-regulate their TLR expression upon TCR activation and a subsequent TLR-signaling in these cells can lead to their enhanced activation, suggesting a new possible mode of iNKT cell activation.


Assuntos
Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Células T Matadoras Naturais/imunologia , Receptores Toll-Like/agonistas , Receptores Toll-Like/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Complexo CD3/imunologia , Linhagem Celular , Citocinas/biossíntese , Citocinas/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Galactosilceramidas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Células T Matadoras Naturais/efeitos dos fármacos , Receptores de Antígenos de Linfócitos T/imunologia , Receptores Toll-Like/biossíntese
8.
Cell Signal ; 24(11): 2035-42, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22759791

RESUMO

The mechanism(s) behind GPCR transactivation of TLR receptors independent of TLR ligands is unknown. Here, GPCR agonists bombesin, bradykinin, lysophosphatidic acid (LPA), cholesterol, angiotensin-1 and -2, but not thrombin induce Neu1 activity in live macrophage cell lines and primary bone marrow macrophage cells from wild-type (WT) mice but not from Neu1-deficient mice. Using immunocytochemistry and NFκB-dependent secretory alkaline phosphatase (SEAP) analyses, bombesin induced NFκB activation in BMC-2 and RAW-blue macrophage cells, which was inhibited by MyD88 homodimerization inhibitor, Tamiflu, galardin, piperazine and anti-MMP-9 antibody. Bombesin receptor, neuromedin B (NMBR), forms a complex with TLR4 and MMP9. Silencing MMP9 mRNA using siRNA transfection of RAW-blue macrophage cells markedly reduced Neu1 activity associated with bombesin-, bradykinin- and LPA-treated cells to the untreated controls. These findings uncover a molecular organizational GPCR signaling platform to potentiate Neu1 and MMP-9 cross-talk on the cell surface that is essential for the transactivation of TLR receptors and subsequent cellular signaling.


Assuntos
Metaloproteinase 9 da Matriz/metabolismo , Neuraminidase/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Toll-Like/metabolismo , Animais , Antivirais/farmacologia , Bombesina/farmacologia , Bradicinina/farmacologia , Células Cultivadas , Lisofosfolipídeos/farmacologia , Metaloproteinase 9 da Matriz/química , Metaloproteinase 9 da Matriz/genética , Camundongos , Fator 88 de Diferenciação Mieloide/antagonistas & inibidores , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Neurocinina B/análogos & derivados , Neurocinina B/metabolismo , Oseltamivir/farmacologia , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores da Bombesina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Vasodilatadores/farmacologia
9.
J Biol Chem ; 286(42): 36532-49, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-21873432

RESUMO

The signaling pathways of mammalian Toll-like receptors (TLRs) are well characterized, but the precise mechanism(s) by which TLRs are activated upon ligand binding remains poorly defined. Recently, we reported a novel membrane sialidase-controlling mechanism that depends on ligand binding to its TLR to induce mammalian neuraminidase-1 (Neu1) activity, to influence receptor desialylation, and subsequently to induce TLR receptor activation and the production of nitric oxide and proinflammatory cytokines in dendritic and macrophage cells. The α-2,3-sialyl residue of TLR was identified as the specific target for hydrolysis by Neu1. Here, we report a membrane signaling paradigm initiated by endotoxin lipopolysaccharide (LPS) binding to TLR4 to potentiate G protein-coupled receptor (GPCR) signaling via membrane Gα(i) subunit proteins and matrix metalloproteinase-9 (MMP9) activation to induce Neu1. Central to this process is that a Neu1-MMP9 complex is bound to TLR4 on the cell surface of naive macrophage cells. Specific inhibition of MMP9 and GPCR Gα(i)-signaling proteins blocks LPS-induced Neu1 activity and NFκB activation. Silencing MMP9 mRNA using lentivirus MMP9 shRNA transduction or siRNA transfection of macrophage cells and MMP9 knock-out primary macrophage cells significantly reduced Neu1 activity and NFκB activation associated with LPS-treated cells. These findings uncover a molecular organizational signaling platform of a novel Neu1 and MMP9 cross-talk in alliance with TLR4 on the cell surface that is essential for ligand activation of TLRs and subsequent cellular signaling.


Assuntos
Metaloproteinase 9 da Matriz/metabolismo , Neuraminidase/metabolismo , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/metabolismo , Animais , Linhagem Celular , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Humanos , Lipopolissacarídeos/farmacologia , Metaloproteinase 9 da Matriz/genética , Camundongos , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/metabolismo , Neuraminidase/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/genética
10.
J Vis Exp ; (43)2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20864924

RESUMO

Mammalian Toll-like receptors (TLRs) are a family of receptors that recognize pathogen-associated molecular patterns. Not only are TLRs crucial sensors of microbial (e.g., viruses, bacteria and parasite) infections, they also play an important role in the pathophysiology of infectious diseases, inflammatory diseases, and possibly in autoimmune diseases. Thus, the intensity and duration of TLR responses against infectious diseases must be tightly controlled. It follows that understanding the structural integrity of sensor receptors, their ligand interactions and signaling components is essential for subsequent immunological protection. It would also provide important opportunities for disease modification through sensor manipulation. Although the signaling pathways of TLR sensors are well characterized, the parameters controlling interactions between the sensors and their ligands still remain poorly defined. We have recently identified a novel mechanism of TLR activation by its natural ligand, which has not been previously observed. It suggests that ligand-induced TLR activation is tightly controlled by Neu1 sialidase activation. We have also reported that Neu1 tightly regulates neurotrophin receptors like TrkA and TrkB, which involve Neu1 and matrix metalloproteinase-9 (MMP-9) cross-talk in complex with the receptors. The sialidase assay has been initially use to find a novel ligand, thymoquinone, in the activation of Neu4 sialidase on the cell surface of macrophages, dendritic cells and fibroblast cells via GPCR Gαi proteins and MMP-9. For TLR receptors, our data indicate that Neu1 sialidase is already in complex with TLR-2, -3 and -4 receptors, and is induced upon ligand binding to either receptor. Activated Neu1 sialidase hydrolyzes sialyl α-2,3-linked ß-galactosyl residues distant from ligand binding to remove steric hinderance to TLR-4 dimerization, MyD88/TLR4 complex recruitment, NFkB activation and pro-inflammatory cell responses. In a collaborative report, Neu1 sialidase has been shown to regulate phagocytosis in macrophage cells. Taken together, the sialidase assay has provided us with powerful insights to the molecular mechanisms of ligand-induced receptor activation. Although the precise relationship between Neu1 sialidase and the activation of TLR, Trk receptors has yet to be fully elucidated, it would represent a new or pioneering approach to cell regulation pathways.


Assuntos
Neuraminidase/metabolismo , Receptores Toll-Like/metabolismo , Animais , Células Dendríticas/enzimologia , Células Dendríticas/metabolismo , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Humanos , Macrófagos/enzimologia , Macrófagos/metabolismo , Camundongos , Neuraminidase/análise
11.
Glycoconj J ; 27(6): 583-600, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20697956

RESUMO

Thymoquinone (TQ) derived from the nutraceutical black cumin oil has been reported to be a novel agonist of Neu4 sialidase activity in live cells (Glycoconj J DOI 10.1007/s10719-010-9281-6). The activation of Neu4 sialidase on the cell surface by TQ was found to involve GPCR-signaling via membrane targeting of Gαi subunit proteins and matrix metalloproteinase-9 activation. Contrary to other reports, TQ had no anti-inflammatory effects in vitro. Here, we show that MyD88/TLR4 complex formation and subsequent NFκB activation are induced by the Neu4 activity associated with TQ-stimulated live primary bone marrow (BM) macrophage cells from WT and Neu1-deficient mice, HEK-TLR4/MD2 cells and BMC-2 macrophage cell line but not with primary macrophage cells from Neu4-knockout mice. Tamiflu (oseltamivir phosphate), pertussis toxin (PTX), a specific inhibitor of Gαi proteins of G-protein coupled receptor (GPCR) and the broad range inhibitor of matrix metalloproteinase (MMP) galardin applied to live primary BM macrophage cells completely block TQ-induced MyD88/TLR4 complex formation. Using immunocytochemistry and western blot analyses, Tamiflu, galardin and PTX inhibit NFκB activation induced by Neu4 activity associated with TQ-stimulated BMC-2 cells, HEK-TLR4/MD2 cells and primary BM macrophages from WT mice. EMSA analyses on HEK-TLR4/MD2 nuclear cell extracts confirm the nuclear localization and DNA binding of TQ-induced NFκB activation in a biphasic manner within 30 min. Co-immunoprecipitation experiments reveal for the first time that MMP-9 may be an important intermediate link in the TQ-induced Neu4 activity circuitously targeting TLR4 receptors. Central to this process is that Neu4 forms a complex with MMP-9, which is already bound to TLR4 receptors. Fluorescence spectrophotometer analyses of live CD14-THP1 cells treated with TQ show Neu4 sialidase activity over 5 min. Using flow cytometry analyses, CD14-THP1 cells treated with TQ express stable protein levels of Neu4, TLR4 and MMP9 on the cell surface over 30 min except for a marked diminution of MMP9 at 15 min. Using cytokine array profiling analyses of serum, Neu4-knockout mice respond poorly to TQ in producing pro-inflammatory cytokines and chemokines after 5-h treatment compared to the wild-type or hypomorphic cathepsin A mice with a secondary 90% Neu1 deficient mice. Our findings establish an unprecedented signaling paradigm for TQ-induced Neu4 sialidase activity. It signifies that MMP-9 forms an important molecular signaling platform in complex with TLR4 receptors at the ectodomain and acts as the intermediate link for TQ-induced Neu4 sialidase in generating a functional receptor with subsequent NFκB activation and pro-inflammatory cytokine production in vivo.


Assuntos
Benzoquinonas/farmacologia , Mediadores da Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , NF-kappa B/metabolismo , Neuraminidase/biossíntese , Animais , Células da Medula Óssea/citologia , Células Cultivadas , Citocinas/sangue , Dipeptídeos/farmacologia , Ativação Enzimática/efeitos dos fármacos , Indução Enzimática/efeitos dos fármacos , Humanos , Antígeno 96 de Linfócito/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , Neuraminidase/antagonistas & inibidores , Oseltamivir/farmacologia , Toxina Pertussis/farmacologia , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Fatores de Tempo , Receptor 4 Toll-Like/metabolismo
12.
Cell Signal ; 22(8): 1193-205, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20347965

RESUMO

Neurotrophin-induced Trk tyrosine kinase receptor activation and neuronal cell survival responses have been reported to be under the control of a membrane associated sialidase. Here, we identify an unprecedented membrane sialidase mechanism initiated by nerve growth factor (NGF) binding to TrkA to potentiate GPCR-signaling via membrane Galphai subunit proteins and matrix metalloproteinase-9 (MMP-9) activation to induce Neu1 sialidase activation in live primary neurons and TrkA- and TrkB-expressing cell lines. Central to this process is that Neu1/MMP-9 complex is bound to TrkA on the cell surface of naïve primary neurons and TrkA-expressing cells. Tamiflu completely blocks this sialidase activity in live TrkA-PC12 cells treated with NGF with an IC(50) of 3.876 microM with subsequent inhibition of Trk activation in primary neurons and neurite outgrowth in TrkA-PC12 cells. Our findings uncover a Neu1 and MMP-9 cross-talk on the cell surface that is critically essential for neurotrophin-induced Trk tyrosine kinase receptor activation and cellular signaling.


Assuntos
Metaloproteinase 9 da Matriz/metabolismo , Fator de Crescimento Neural/farmacologia , Neuraminidase/metabolismo , Neurônios/metabolismo , Receptor trkA/metabolismo , Transdução de Sinais , Animais , Membrana Celular/enzimologia , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Camundongos , Neuraminidase/análise , Neurônios/enzimologia , Células PC12 , Ratos
13.
Glycoconj J ; 27(3): 329-48, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20213245

RESUMO

Anti-inflammatory activities of thymoquinone (TQ) have been demonstrated in in vitro and in vivo studies. However, the precise mechanism(s) of TQ in these anti-inflammatory activities is not well understood. Using a newly developed assay to detect sialidase activity in live macrophage cells (Glycoconj J doi: 10.1007/s10719-009-9239-8 ), here we show that TQ has no inhibitory effect on endotoxin lipopolysaccharide (LPS) induced sialidase activity in live BMC-2 macrophage cells. In contrast, the parent black seed oil (BSO) and another constituent of BSO para-cymene (p-CY) completely block LPS induced sialidase activity. All of these compounds had no effect on cell viability. On the other hand, TQ induces a vigorous sialidase activity in live BMC-2 macrophage cells in a dose dependent manner as well in live DC-2.4 dendritic cells, HEK-TLR4/MD2, HEK293, SP1 mammary adenocarcinoma cells, human WT and 1140F01 and WG0544 type I sialidosis fibroblast cells. Tamiflu (oseltamivir phosphate) inhibits TQ-induced sialidase activity in live BMC-2 cells with an IC(50) of 0.0194 microM compared to an IC(50) of 19.1 microM for neuraminidase inhibitor DANA (2-deoxy-2,3-dehydro-N-acetylneuraminic acid). Anti-Neu1, -2 and -3 antibodies have no inhibition of TQ-induced sialidase activity in live BMC-2 and human THP-1 macrophage cells but anti-Neu4 antibodies completely block this activity. There is a vigorous sialidase activity associated with TQ treated live primary bone marrow (BM) macrophage cells derived from WT and hypomorphic cathepsin A mice with a secondary Neu1 deficiency (NeuI KD), but not from Neu4 knockout (Neu4 KO) mice. Pertussis toxin (PTX), a specific inhibitor of Galphai proteins of G-protein coupled receptor (GPCR) and the broad range inhibitors of matrix metalloproteinase (MMP) galardin and piperazine applied to live BMC-2, THP-1 and primary BM macrophage cells completely block TQ-induced sialidase activity. These same inhibitory effects are not observed with the GM1 ganglioside specific cholera toxin subunit B (CTXB) as well as with CTX, tyrosine kinase inhibitor K252a, and the broad range GPCR inhibitor suramin. The specific inhibitor of MMP-9, anti-MMP-9 antibody and anti-Neu4 antibody, but not the specific inhibitor of MMP-3 completely block TQ-induced sialidase activity in live THP-1 cells, which express Neu4 and MMP-9 on the cell surface. Neu4 sialidase activity in cell lysates from TQ-treated live THP-1 cells desialylates natural gangliosides and mucin substrates. RT-PCR and western blot analyses reveal no correlation between mRNA and protein values for Neu3 and Neu4 in human monocytic THP-1 cells, suggesting for the first time a varied post-transcriptional mechanism for these two mammalian sialidases independent of TQ activation. Our findings establish an unprecedented activation of Neu4 sialidase on the cell surface by thymoquinone, which is derived from the nutraceutical black cumin oil. The potentiation of GPCR-signaling by TQ via membrane targeting of Galphai subunit proteins and matrix metalloproteinase-9 activation may be involved in the activation process of Neu4 sialidase on the cell surface.


Assuntos
Benzoquinonas/farmacologia , Fibroblastos/enzimologia , Macrófagos/enzimologia , Metaloproteinase 9 da Matriz/metabolismo , Mucolipidoses/enzimologia , Neuraminidase/metabolismo , Nigella sativa/química , Receptores Acoplados a Proteínas G/metabolismo , Animais , Benzoquinonas/química , Western Blotting , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Imunoprecipitação , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase
14.
Cell Signal ; 22(2): 314-24, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19796680

RESUMO

The ectodomain of TOLL-like receptors (TLR) is highly glycosylated with several N-linked gylcosylation sites located in the inner concave surface. The precise role of these sugar N-glycans in TLR receptor activation is unknown. Recently, we have shown that Neu1 sialidase and not Neu2, -3 and -4 forms a complex with TLR-2, -3 and -4 receptors on the cell-surface membrane of naïve and activated macrophage cells (Glycoconj J DOI 10.1007/s10719-009-9239-8). Activation of Neu1 is induced by TLR ligands binding to their respective receptors. Here, we show that endotoxin lipopolysaccharide (LPS)-induced MyD88/TLR4 complex formation and subsequent NFkappaB activation is dependent on the removal of alpha-2,3-sialyl residue linked to beta-galactoside of TLR4 by the Neu1 activity associated with LPS-stimulated live primary macrophage cells, macrophage and dendritic cell lines but not with primary Neu1-deficient macrophage cells. Exogenous alpha-2,3 sialyl specific neuraminidase (Streptoccocus pneumoniae) and wild-type T. cruzi trans-sialidase (TS) but not the catalytically inactive mutant TSAsp98-Glu mediate TLR4 dimerization to facilitate MyD88/TLR4 complex formation and NFkappaB activation similar to those responses seen with LPS. These same TLR ligand-induced NFkappaB responses are not observed in TLR deficient HEK293 cells, but are re-established in HEK293 cells stably transfected with TLR4/MD2, and are significantly inhibited by alpha-2,3-sialyl specific Maackia amurensis (MAL-2) lectin, alpha-2,3-sialyl specific galectin-1 and neuraminidase inhibitor Tamiflu but not by alpha-2,6-sialyl specific Sambucus nigra lectin (SNA). Taken together, the findings suggest that Neu1 desialylation of alpha-2,3-sialyl residues of TLR receptors enables in removing a steric hinderance to receptor association for TLR activation and cellular signaling.


Assuntos
Neuraminidase/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Animais , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Glicoproteínas/farmacologia , Glicosilação , Humanos , Lipopolissacarídeos/farmacologia , Camundongos , NF-kappa B/metabolismo , Neuraminidase/farmacologia , Oseltamivir/farmacologia , Fosforilação , Receptor 4 Toll-Like/química
15.
J Biol Chem ; 285(1): 206-15, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19889639

RESUMO

The differentiation of monocytes into macrophages and dendritic cells is accompanied by induction of cell-surface neuraminidase 1 (Neu1) and cathepsin A (CathA), the latter forming a complex with and activating Neu1. To clarify the biological importance of this phenomenon we have developed the gene-targeted mouse models of a CathA deficiency (CathA(S190A)) and a double CathA/Neu1 deficiency (CathA(S190A-Neo)). Macrophages of CathA(S190A-Neo) mice and their immature dendritic cells showed a significantly reduced capacity to engulf Gram-positive and Gram-negative bacteria and positively and negatively charged polymer beads as well as IgG-opsonized beads and erythrocytes. Properties of the cells derived from CathA(S190A) mice were indistinguishable from those of wild-type controls, suggesting that the absence of Neu1, which results in the increased sialylation of the cell surface proteins, probably affects multiple receptors for phagocytosis. Indeed, treatment of the cells with purified mouse Neu1 reduced surface sialylation and restored phagocytosis. Because Neu1-deficient cells showed reduced internalization of IgG-opsonized sheep erythrocytes whereas binding of the erythrocytes to the cells at 4 degrees C persisted, we speculate that the absence of Neu1 in particular affected transduction of signals from the Fc receptors for immunoglobulin G (FcgammaR). Indeed the macrophages from the Neu1-deficient mice showed increased sialylation and impaired phosphorylation of FcgammaR as well as markedly reduced phosphorylation of Syk kinase in response to treatment with IgG-opsonized beads. Altogether our data suggest that the cell surface Neu1 activates the phagocytosis in macrophages and dendritic cells through desialylation of surface receptors, thus, contributing to their functional integrity.


Assuntos
Macrófagos/citologia , Macrófagos/enzimologia , Neuraminidase/metabolismo , Fagocitose , Animais , Catepsina A/metabolismo , Diferenciação Celular , Membrana Celular/enzimologia , Células Dendríticas/citologia , Eritrócitos/citologia , Eritrócitos/metabolismo , Lectinas/metabolismo , Macrófagos/microbiologia , Camundongos , Ácido N-Acetilneuramínico/metabolismo , Neuraminidase/deficiência , Proteínas Opsonizantes/imunologia , Receptores de IgG/imunologia , Ovinos , Transdução de Sinais , Coloração e Rotulagem
16.
Glycoconj J ; 26(9): 1197-212, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19430901

RESUMO

The signaling pathways of mammalian Toll-like receptors (TLR) are well characterized, but the initial molecular mechanisms activated following ligand interactions with the receptors remain poorly defined. Here, we show a membrane controlling mechanism that is initiated by ligand binding to TLR-2, -3 and-4 to induce Neu1 sialidase activity within minutes in live primary bone marrow (BM) macrophage cells and macrophage and dendritic cell lines. Central to this process is that Neu1 and not Neu2,-3 and-4 forms a complex with TLR-2,-3 and-4 on the cell surface of naïve macrophage cells. Neuraminidase inhibitors BCX1827, 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (DANA), zanamivir and oseltamivir carboxylate have a limited significant inhibition of the LPS-induced sialidase activity in live BMC-2 macrophage cells but Tamiflu (oseltamivir phosphate) completely blocks this activity. Tamiflu inhibits LPS-induced sialidase activity in live BMC-2 cells with an IC(50) of 1.2 microM compared to an IC(50) of 1015 microM for its hydrolytic metabolite oseltamivir carboxylate. Tamiflu blockage of LPS-induced Neu1 sialidase activity is not affected in BMC-2 cells pretreated with anticarboxylesterase agent clopidogrel. Endotoxin LPS binding to TLR4 induces Neu1 with subsequent activation of NFkappaB and the production of nitric oxide and pro-inflammatory IL-6 and TNFalpha cytokines in primary and macrophage cell lines. Hypomorphic cathepsin A mice with a secondary Neu1 deficiency respond poorly to LPS-induced pro-inflammatory cytokines compared to the wild-type or hypomorphic cathepsin A with normal Neu1 mice. Our findings establish an unprecedented mechanism for pathogen molecule-induced TLR activation and cell function, which is critically dependent on Neu1 sialidase activity associated with TLR ligand treated live primary macrophage cells and macrophage and dendritic cell lines.


Assuntos
Células Dendríticas/enzimologia , Macrófagos/enzimologia , Neuraminidase/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Receptores Toll-Like/imunologia , Animais , Células da Medula Óssea/citologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/sangue , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Imunoprecipitação , Mediadores da Inflamação/metabolismo , Ligantes , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Camundongos , Neuraminidase/antagonistas & inibidores , Neuraminidase/deficiência , Óxido Nítrico/biossíntese , Oseltamivir/farmacologia
17.
Virology ; 385(2): 464-72, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19157480

RESUMO

The mouse mammary tumor virus (MMTV) is a type B retrovirus that is unique from other retroviruses in having multiple "tissue specific" and "hormone inducible" promoters. This unique feature has lead to the increasing interest in studying the biology of MMTV replication with the ultimate goal of developing MMTV based vectors for potentially targeted human gene therapy. In this report, we describe, for the first time, the establishment of an in vivo genetic complementation assay to study various aspects of MMTV replication. In the assay described here, the function of MMTV Rem/RmRE regulatory pathway has been successfully substituted by a heterologous retroviral constitutive transport element (CTE) from Mason Pfizer Monkey Virus (MPMV) for mature MMTV particle production. Our results revealed that in the absence of MPMV CTE or Rem/RmRE, RNA transcribed from MMTV Gag-Pol expression plasmids were efficiently transported to the cytoplasm. However, the presence of CTE was indispensable for Gag-Pol protein expression. In addition, we report the development of MMTV based vectors in which the packageable RNA was transcribed either from MMTV LTR or from a chimeric LTR, which could successfully be packaged and propagated by particles produced from MMTV Gag-Pol expression plasmids containing a heterologous transport element. The role of MPMV CTE in the transport of MMTV transfer vector RNA was not found to be significant. Development of such an assay should not only shed light on how MMTV regulates its gene expression, but also should provide additional molecular tools for delineating the packaging determinants for MMTV, which is imperative for the development of novel vectors for targeted and inducible gene therapy.


Assuntos
Genes Virais , Teste de Complementação Genética/métodos , Vírus do Tumor Mamário do Camundongo/fisiologia , Retroviridae/genética , Replicação Viral , Animais , Linhagem Celular , Proteínas de Fusão gag-pol/metabolismo , Regulação Viral da Expressão Gênica , Técnicas de Transferência de Genes , Vetores Genéticos , Células HeLa , Humanos , Vírus do Tumor Mamário do Camundongo/genética , Plasmídeos/genética , Plasmídeos/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Montagem de Vírus/genética , Replicação Viral/genética
18.
Glycobiology ; 17(7): 725-34, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17389653

RESUMO

Trypanosome trans-sialidase (TS) is a sialic acid-transferring enzyme and a novel ligand of tyrosine kinase (TrkA) receptors but not of neurotrophin receptor p75NTR. Here, we show that TS targets TrkB receptors on TrkB-expressing pheochromocytoma PC12 cells and colocalizes with TrkB receptor internalization and phosphorylation (pTrkB). Wild-type TS but not the catalytically inactive mutant TSDeltaAsp98-Glu induces pTrkB and mediates cell survival responses against death caused by oxidative stress in TrkA- and TrkB-expressing cells like those seen with nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). These same effects are not observed in Trk deficient PC12(nnr5) cells, but are re-established in PC12(nnr5) cells stably transfected with TrkA or TrkB, are partially blocked by inhibitors of tyrosine kinase (K-252a), mitogen-activated protein/mitogen-activated kinase (PD98059) and completely blocked by LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3K). Both TrkA- and TrkB-expressing cells pretreated with TS or their natural ligands are protected against cell death caused by serum/glucose deprivation or from hypoxia-induced neurite retraction. The cell survival effects of NGF and BDNF against oxidative stress are significantly inhibited by the neuraminidase inhibitor, Tamiflu. Together, these observations suggest that trypanosome TS mimics neurotrophic factors in cell survival responses against oxidative stress, hypoxia-induced neurite retraction and serum/glucose deprivation.


Assuntos
Glucose/metabolismo , Glicoproteínas/metabolismo , Neuraminidase/metabolismo , Estresse Oxidativo , Receptor trkB/metabolismo , Soro/metabolismo , Trypanosoma cruzi/metabolismo , Animais , Sobrevivência Celular , Inibidores Enzimáticos/farmacologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Hipóxia , Fator de Crescimento Neural/metabolismo , Oseltamivir/farmacologia , Células PC12 , Ratos
19.
Microbes Infect ; 8(3): 767-78, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16513389

RESUMO

This study was undertaken to address the role of feline immunodeficiency virus (FIV) long terminal repeats (LTR) as potential packaging determinants. A number of studies in the recent past have clearly demonstrated that the core packaging determinants of FIV reside within at least two distinct regions at the 5' end of the viral genome, from R in the 5' LTR to approximately 150 bp within the 5' untranslated region (5' UTR) and within the first 100 bp of gag; however, there have been conflicting observations as to the role of the LTR regions in packaging and whether they contain the principal packaging determinants of FIV. Using a semi-quantitative RT-PCR approach on heterologous non-viral vector RNAs in an in vivo packaging assay, this study demonstrates that the principal packaging determinants of FIV reside within the first 150 bp of 5' UTR and 100 bp of gag (the two core regions) and not the viral 5' LTR. Furthermore, it shows that in addition to the 5' LTR, the 3' LTR also contains packaging determinants, but of a less significant nature compared to the core packaging determinants. This study defines the relative contribution of the various regions implicated in FIV genomic RNA packaging, and reveals that like other primate lentiviruses, the packaging determinants of FIV are multipartite and spread out, an observation that has implications for safer and more streamlined design of FIV-based gene transfer vectors.


Assuntos
Regiões 3' não Traduzidas/genética , Regiões 5' não Traduzidas/genética , Produtos do Gene gag/genética , Vírus da Imunodeficiência Felina/genética , RNA Viral/metabolismo , Sequências Repetidas Terminais/genética , Montagem de Vírus/genética , Linhagem Celular , Regulação Viral da Expressão Gênica , Produtos do Gene gag/metabolismo , Humanos , Vírus da Imunodeficiência Felina/metabolismo , RNA Viral/genética
20.
J Virol ; 79(21): 13817-21, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16227303

RESUMO

The packaging determinants of feline immunodeficiency virus (FIV) consist of two discontinuous core regions, extending from R to approximately 150 bp of the 5' untranslated region and the first approximately 100 bp of gag. However, the role of sequences intervening between the core regions in packaging has not been clear. A mutational analysis was conducted to determine whether the intervening sequences played a role in FIV RNA packaging, using an in vivo packaging assay complemented with semiquantitative reverse transcriptase PCR. Our analyses reveal that the intervening sequences are dispensable not only for vector RNA packaging but also for propagation, confirming the discontinuous nature of the FIV packaging signal.


Assuntos
Vírus da Imunodeficiência Felina/fisiologia , RNA Viral/biossíntese , Vetores Genéticos , Vírus da Imunodeficiência Felina/genética , Montagem de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...